

The Izze-Racing 24-Bit ADC-to-CAN Amplifier is designed to measure the voltage signal from a strain gauge or load cell with class-leading precision & ultra-low noise, and outputs the raw voltage, temperature, and user-calibrated output with advanced temperature compensation via CAN.

The amplifier measure's differential voltages with a resolution of 1μ V and RMS noise of only ±750nV at a sampling frequency of 100Hz. The differential voltage and temperature is broadcasted via CAN but it may also be programmed to simultaneously transmit a calibrated output (convert voltage to strain/force) with linear or advanced tabular temperature compensation.

AMPLIFIER SPECIFICATIONS

Differential Voltage Measurement Range, ΔV	$\pm 32 \text{ mV}$ (limited by 16-bit CAN output)
Maximum Differential Voltage, ΔV_{max}	±5.0 V
Resolution	$1 \ \mu V$ (limited by 16-bit CAN output)
Accuracy	±60 μV
RMS Noise	±6 μV at 800Hz
(For 350Ω full-bridge strain gauge / load cell with excitation)	±750 nV at 100Hz
Filter	1 st Order LP Filter, f _c = 1.6kHz
Supply Voltage, V₅	5 to 8 V
Supply Current, I _s (typ)	34 mA
Bridge Excitation Voltage, V _B	4 V
Maximum Bridge Excitation Current Draw, I _{B.max}	40 mA
Input Impedance, R	110 kΩ
Recommended Strain Gauge / Load Cell Impedance, $R_{\scriptscriptstyle B}$	350 Ω
Resolution, Temperature Sensor	0.4°C
Accuracy, Temperature Sensor	±2.0 °C

MECHANICAL SPECIFICATIONS

Weight (excluding wiring harness)	19 g
L x W x H (max), Amplifier	54 x 22 x 6 mm
Protection Rating	IP66
Operating Temperature Range, T _p	-40 to 85°C

CAN SPECIFICATIONS

Standard	CAN 2.0A (11-bit identifier), ISO-11898				
Bit Rate	1 Mbit/s (configurable upon request)				
Byte Order	Big-Endian / Motorola				
Data Conversion	1µV per bit	ī	Diff. Voltage		
	0.1 per bit		Calibrated Output		
	0.1°C per b	oit	Temperature		
	(all va	ariables	s signed)		
CAN ID (Default)	1250 (Dec)	/ 0x4E	2 (Hex)		
Termination	None				

CAN ID: 0x4E2 (Default)

	· /						
Differential Voltage (µV)		Calibrated Output, F		Internal Temperature		Opt. External Temperature	
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

WIRING SPECIFICATIONS:

Wire	26 AWG M22759/32, DR25 jacket
Cable Length (typ.)	500 mm (CAN output side)
	250 mm (strain gauge / load cell side)
Connector	None

STRAIN GAUGE / LOAD CELL

+	Red Black	(twisted)	Supply Voltage, V _s Red Ground Black		(
	Green		CAN + Blue		
	White	(twisted)	CAN - White	(¢
	Blue				

DIMENSIONS AND WIRING LAYOUT:

CAN

WIRING DIAGRAM:

- External Temperature Sensor: Analog Devices TMP36GT9Z
- The external temperature sensor, along with soldering tabs for strain gauge attachment, may be attached to the amplifier upon request.

SENSOR CONFIGURATION:

To modify the sensor's configuration, send the following CAN messages at 1Hz for at least 10 seconds and then reset the sensor by disconnecting power for 10 seconds:

character cont	ent base ib						
Programming	Constant	New CAN Base	e ID (11-bit)	Update Rate	Temp. Comp.	Temp. Sensor	Bit Rate
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4	Byte 5	Byte 6	Byte 7
30000 - 0x753	0	1 - 0:001		1 = 100Hz	1 = None	1 = Internal	1 = 1 Mbit/s
50000 - 0x755	0	1 = 0x001		2 = 200Hz	2 = Linear	2 = External	2 = 500 kbit/s
		:		3 = 400Hz	3 = Tabular		3 = 250 kbit/s
		2047 = 0X7FF		4 = 800Hz			4 = 125 kbit/s

CAN ID: Current Base ID

CAN messages should only be sent to the sensor during the configuration sequence. **DO NOT** continuously send CAN messages to the sensor.

LINEAR CALIBRATED OUTPUT, F:

 $F = M \times V + C$ (F has resolution of 0.1)

where,

V = 16-bit voltage in μ V

The gain, M, and offset, C, are specified in scientific notation:

$$M = m_{M} \times 10^{n_{M}}$$

$$C = m_c \times 10^{n_c}$$

where the respective coefficient, m, and exponent, n, are specified by sending the following CAN messages to the amplifier (send at 1-10Hz for 10 seconds, then cycle power to sensor):

CAN ID: Current Base ID

Programming Constant	Gain, Coefficient [m _M]	Gain, Exponent [n _M]	Offset, Coefficient [m _c]	Offset, Exponent [n _c]
Byte 0 (MSB) Byte 1 (LSB)	Byte 2 (MSB) Byte 3 (LSB)	Byte 4	Byte 5 (MSB) Byte 6 (LSB)	Byte 7
20000 = 0x4F20	0 = 0x0000	0 = 0x000	0 = 0x0000	0 = 0x000
20000 074220	÷	:		:
65536 = 0x7FFF		256 = 0x100	65536 = 0x7FFF	256 = 0x100
	(2's compliment)	(2's compliment)	(2's compliment)	(2's compliment)

EXAMPLE:

$$M = 1.234 \text{ N/}\mu\text{V} = 1234 \times 10^{-3} \implies m_{_{M}} = 1234, n_{_{M}} = -3$$

C = -5600 N = -56 × 10² $\implies m_{_{C}} = -56, n_{_{C}} = 2$

 $m_{_M} = 1234 = 1234$ (DEC) or 0x4D2 (HEX) for Byte 2-3 $n_{_M} = -3 \rightarrow 2$'s Compliment $\Rightarrow (2^8 - 3) = 253$ (DEC) or 0xFD (HEX) for Byte 4

 $m_c = -56 \rightarrow 2$'s Compliment $\Rightarrow (2^{16} - 56) = 65480$ (DEC) or 0xFFC8 (HEX) for Byte 5-6 $n_c = 2 = 2$ (DEC) or 0x02 (HEX) for Byte 7

Resultant CAN Message:

Programming Constant Slope, Coefficient [m _M]		Slope, Exponent [n _M]	Offset, Coefficient [m _c]	Offset, Exponent [n _c]
Byte 0 (MSB) Byte 1 (LSB)	Byte 2 (MSB) Byte 3 (LSB)	Byte 4	Byte 5 (MSB) Byte 6 (LSB)	Byte 7
$20000 = 0 \times 4 E 20$	1234 = 0x4D2	253 = 0xFD	65533 = 0xFFC8	2 = 0x02
20000 - 074620	(Value = 1234)	(Value = -3)	(Value = -56)	(Value = 2)

LINEAR TEMPERATURE COMPENSATION of CALIBRATED OUTPUT, F:

$$F = M(T) \times V + C(T)$$

where,

V = 16-bit voltage in μ V

$$M(T) = (T - 25^{\circ}C) \times \frac{M_{L}}{100} \times M_{0} + M_{0}$$

C(T) = (T - 25^{\circ}C) \times C_{L} + C_{0}

- M_0 and C_0 are the linear gain and offset constants (referenced at 25 °C) programmed in the previous section.
- T is the temperature measured by the internal or external temperature sensor.
- M_L is the <u>percent</u> change in gain, M, per degree Celsius, $M_L \doteq \left| \frac{\%}{°C} \right|$
- C_{L} is the correction in offset, C, per degree Celsius, $C_{L} \doteq \left| \frac{\Delta C}{C} \right|$
- M_L is approximately -0.034 % /° C for steel and -0.067 % /° C for aluminum. The temperature correction in offset, C_L , is application specific but typically linear in behavior.

The gain's temperature sensitivity, M_L , and temperature correction in offset, C_L , are specified in scientific notation:

$$M_{L} = m_{ML} \times 10^{n_{ML}}$$
$$C_{L} = m_{CL} \times 10^{n_{CL}}$$

where the respective coefficient, m, and exponent, n, are specified by sending the following CAN message to the amplifier (send at 1-10Hz for 10 seconds, then cycle power to sensor):

Programming Cons	Programming Constant M _L , Coefficient [m _{ML}]		M _L , Exponent [n _{ML}]	C _L , Coefficient [m _{CL}]	C _L , Exponent [n _{CL}]
Byte 0 (MSB) Byte	1 (LSB)	Byte 2 (MSB) Byte 3 (LSB)	Byte 4	Byte 5 (MSB) Byte 6 (LSB)	Byte 7
20001 = 0x4E21		0 = 0x0000	0 = 0x000	0 = 0x0000	0 = 0x000
			•		
		65536 = 0x7FFF	256 = 0x100	65536 = 0x7FFF	256 = 0x100
	(2's compliment)		(2's compliment)	(2's compliment)	(2's compliment)

CAN ID: Current Base ID)
-------------------------	---

EXAMPLE:

$$M_{L} = -.067 \% / °C = -67 \times 10^{-3} \implies m_{ML} = -67, n_{ML} = -3$$
$$C_{L} = 4.53 \text{ N} / °C = 453 \times 10^{-2} \implies m_{CL} = 453, n_{CL} = -2$$

 $m_{_{ML}} = -67 \rightarrow 2$'s Compliment $\Rightarrow (2^{16} - 67) = 65469$ (DEC) or 0xFFBD (HEX) for Byte 2-3 $n_{_{ML}} = -3 \rightarrow 2$'s Compliment $\Rightarrow (2^8 - 3) = 253$ (DEC) or 0xFD (HEX) for Byte 4

 $m_{_{CL}} = 453 = 453$ (DEC) or 0x1C5 (HEX) for Byte 5-6 $n_{_{CL}} = -2 \rightarrow 2$'s Compliment $\Rightarrow (2^8 - 2) = 254$ (DEC) or 0xFE (HEX) for Byte 7

Resultant CAN Message:

Programming Constant	Slope, Coefficient [m _{ML}]	Slope, Exponent [n _{ML}]	Offset, Coefficient [m _{CL}]	Offset, Exponent [n _{cL}]	
Byte 0 (MSB) Byte 1 (LSB)	Byte 2 (MSB) Byte 3 (LSB)	Byte 2 (MSB) Byte 3 (LSB) Byte 4 Byte 5 (MSB) Byte 6 (LSB)		Byte 7	
20001 = 0 x / E 21	65469 = 0xFFBD	253 = 0xFD	453 = 0x1C5	254 = 0xFE	
20001 - 074621	(Value = -67)	(Value = -3)	(Value = 453)	(Value = -2)	

TABULAR TEMPERATURE COMPENSATION of CALIBRATED OUTPUT, F:

 $F = M(T) \times V + C(T)$

where,

V = 16-bit voltage in μ V

M(T) and C(T) vary with temperature according to the table below (with linear interpolation):

Temp.	Gain, M _{T#}	Offset, C _{T#}
-25°C	M _{T0}	C _{T0}
0°C	M _{T1}	C _{T1}
25°C	M _{T2}	C _{T2}
50°C	M _{T3}	C _{T3}
75°C	M _{T4}	C _{T4}
100°C	M _{T5}	C _{T5}
125°C	M _{T6}	C _{T6}
150°C	M _{T7}	C _{T7}

The gain and offset at different temperatures, $M_{T\#}$ and $C_{T\#}$, respectively, are specified in scientific notation:

$$M_{T^{\#}} = m_{MT^{\#}} \times 10^{n_{MT^{\#}}}$$

$$C_{T\#} = m_{CT\#} \times 10^{n_{CT\#}}$$

where the respective coefficient, m, and exponent, n, are specified by sending the following CAN messages to the amplifier (send at 1-10Hz for 10 seconds, then cycle power to sensor):

|--|

Programming Constant	M_{T0} , Coefficient [m_{MT0}]	M _{T0} , Exponent [n _{MT0}]	C _{T0} , Coefficient [m _{CT0}]	C _{T0} , Exponent [n _{CT0}]
Byte 0 (MSB) Byte 1 (LSB)	Byte 2 (MSB) Byte 3 (LSB)	Byte 4	Byte 5 (MSB) Byte 6 (LSB)	Byte 7
20002 = 0x/1E22	0 = 0x0000	0 = 0x000	0 = 0x0000	0 = 0x000
	:			:
	65536 = 0x7FFF	256 = 0x100	65536 = 0x7FFF	256 = 0x100
	(2's compliment)	(2's compliment)	(2's compliment)	(2's compliment)

Gain and Offset at 0°C

Programming Constant	ogramming Constant M _{T1} , Coefficient [m _{MT1}]		C _{T1} , Coefficient [m _{CT1}]	C _{T1} , Exponent [n _{CT1}]
Byte 0 (MSB) Byte 1 (LSB)	Byte 2 (MSB) Byte 3 (LSB)	Byte 4	Byte 5 (MSB) Byte 6 (LSB)	Byte 7
20003 = 0x4E23	0 = 0x0000 :	0 = 0x000 :	0 = 0x0000 :	0 = 0x000 :
	65536 = 0x7FFF	256 = 0x100	65536 = 0x7FFF	256 = 0x100
	(2's compliment)	(2's compliment)	(2's compliment)	(2's compliment)

Gain and Offset at 25°C

Programming	Programming Constant M _{T2} , Coefficient [m _{MT2}]		M _{T2} , Exponent [n _{MT2}]	C _{T2} , Coefficient [m _{CT2}]	C _{T0} , Exponent [n _{CT2}]
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB) Byte 3 (LSB)	Byte 4	Byte 5 (MSB) Byte 6 (LSB)	Byte 7
20004 = 0x4E24		0 = 0x0000	0 = 0x000	0 = 0x0000	0 = 0x000
		65536 = 0x7FFF	256 = 0x100	65536 = 0x7FFF	256 = 0x100
		(2's compliment)	(2's compliment)	(2's compliment)	(2's compliment)

Gain and Offset at 50°C

Programming Constant	M _{T3} , Coefficient [m _{MT3}]	M _{T3} , Exponent [n _{MT3}]	CT3, Coefficient [mCT3]	C _{T3} , Exponent [n _{CT3}]
Byte 0 (MSB) Byte 1 (LSB)	Byte 2 (MSB) Byte 3 (LSB)	Byte 4	Byte 5 (MSB) Byte 6 (LSB)	Byte 7
20005 = 0x4E25	0 = 0x0000	0 = 0x000	0 = 0x0000	0 = 0x000
20003 074223	:	•	:	•
	65536 = 0x7FFF	256 = 0x100	65536 = 0x7FFF	256 = 0x100
	(2's compliment)	(2's compliment)	(2's compliment)	(2's compliment)

Gain and Offset at 75°C

Programming	ogramming Constant M _{T4} , Coefficient [m _{MT4}]		M_{T4} , Exponent [n_{MT4}]	C _{T4} , Coefficient [m _{CT4}]	C _{T0} , Exponent [n _{CT4}]
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB) Byte 3 (LSB)	Byte 4	Byte 5 (MSB) Byte 6 (LSB)	Byte 7
20006 = 0x4E	26	0 = 0x0000 :	0 = 0x000 :	0 = 0x0000	0 = 0x000
		65536 = 0x7FFF	256 = 0x100	65536 = 0x7FFF	256 = 0x100
(2's compliment)		(2's compliment)	(2's compliment)	(2's compliment)	

Gain and Offset at 100°C

Programming Constant	M _{T5} , Coefficient [m _{MT5}]	M _{T5} , Exponent [n _{MT5}]	C _{T0} , Coefficient [m _{CT5}]	C _{T0} , Exponent [n _{CT5}]
Byte 0 (MSB) Byte 1 (LSB)	Byte 2 (MSB) Byte 3 (LSB)	Byte 4	Byte 5 (MSB) Byte 6 (LSB)	Byte 7
20007 = 0x4F27	0 = 0x0000	0 = 0x000	0 = 0x0000	0 = 0×000
	:	•	•	•
	65536 = 0x7FFF	256 = 0x100	65536 = 0x7FFF	256 = 0x100
	(2's compliment)	(2's compliment)	(2's compliment)	(2's compliment)

Gain and Offset at 125°C

Programming Constant M _{T6} , Coefficient [m _{MT6}]		M _{T6} , Exponent [n _{MT6}]	C _{T6} , Coefficient [m _{CT6}]	C _{T6} , Exponent [n _{CT6}]
Byte 0 (MSB) Byte 1 (LSB)	Byte 2 (MSB) Byte 3 (LSB)	Byte 4	Byte 5 (MSB) Byte 6 (LSB)	Byte 7
20008 = 0x4E28	0 = 0×0000	0 = 0x000	0 = 0×0000	0 = 0x000
	: 65536 = 0x7FFF	: 256 = 0x100	: 65536 = 0x7FFF	: 256 = 0x100
	(2's compliment)	(2's compliment)	(2's compliment)	(2's compliment)

Gain and Offset at 150°C

Programming Co	onstant	M _{T7} , Coefficient [m _{MT7}]		M _{T7} , Exponent [n _{MT7}]	CT7, Coefficient [mCT7]		CT7, Exponent [n _{CT7}]
Byte 0 (MSB) Byte	/te 1 (LSB)	Byte 2 (MSB) Byte 3 (LSB)		Byte 4	Byte 5 (MSB)	Byte 6 (LSB)	Byte 7
20009 = 0x4F29		0 = 0x0000		0 = 0x000	0 = 0x0000		0 = 0x000
			•	•		:	
		65536 = 0x7FFF		256 = 0x100	65536 = 0x7FFF		256 = 0x100
		(2's compliment)		(2's compliment)	(2's compliment)		(2's compliment)

ADDITIONAL INFORMATION:

- Recommended full-bridge strain gauges: 350Ω OMEGA Transducer Quality Strain Gauges
 - Bending/Axial: <u>www.omega.com/pptst/SGT_Full-Bridge_Diaphragm.html</u>
 - Shear: <u>www.omega.com/pptst/SGT_Full-Bridge_Shear.html</u>
- An update frequency of 100 or 200Hz offers a good balance between speed & RMS noise and is recommended for most applications
- The wiring harness length between the amplifier and strain gauge / load cell should be as short as possible
- Do not subject the amplifier module to stress, force, and/or bending
- Avoid mounting the amplifier near hot objects. The temperature of the amplifier should closely match the temperature of the strain gauge if the *internal* temperature sensor is used for temperature compensation.

WARRANTY:

All amplifiers come with a 30-day return policy and have a 1-year warranty from manufacturing defects. If there is ever an issue, please contact us at support@izzeracing.com