


The Izze-Racing infrared sensor is specifically designed to measure the highly transient surface temperature of a tire with spatial fidelity, providing invaluable information for chassis tuning, tire exploitation, and driver development.

Each sensor is capable of measuring temperature at 16, 8, or 4 laterally-spaced points, at a sampling frequency of up to 100Hz, object temperature between -20 to 300°C, using CAN 2.0A protocol, enclosed in a compact IP66 rated aluminum enclosure, and priced to be affordable to all tiers of motorsport.

The sensor is now offered as a complete kit for any data acquisition system that can log CAN messages. The kit includes four 4, 8, or 16-channel infrared tire temperature sensors with wide (60°) or ultra-wide (120°) field-of-views and a complete motorsport-grade wiring harness.



#### SENSOR SPECIFICATIONS

| Temperature Measurement Range, T <sub>o</sub>          | -20 to 300°C                                                                                                        |  |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| Package Temperature Range, T <sub>p</sub>              | -20 to 85°C                                                                                                         |  |  |
| Accuracy (Central 10 Channels, Nominal) (16-Ch Sensor) | $\pm 1.0$ °C for 0 °C < T <sub>p</sub> < 50 °C<br>$\pm 2.0$ °C for T <sub>p</sub> < 0 °C and T <sub>p</sub> > 50 °C |  |  |
| Accuracy (First & Last 3 Channels, Nominal)            | $\pm 2.0$ °C for 0°C < T <sub>p</sub> < 50°C                                                                        |  |  |
| (16-Ch Sensor)                                         | $\pm 3.0$ °C for $T_p < 0$ °C and $T_p > 50$ °C                                                                     |  |  |
| Noise Equivalent Temperature Difference, NETD          | $0.5^{\circ}$ C at 16Hz, $\epsilon$ = $0.85$ , $T_{\circ}$ = $25^{\circ}$ C                                         |  |  |
| Field of View, FOV                                     | 60°x 8° (wide)<br>120°x 15° (ultra-wide)                                                                            |  |  |
| Number of Channels                                     | 16, 8, or 4                                                                                                         |  |  |
| Sampling Frequency                                     | 100 <sup>1</sup> , 64 <sup>1</sup> , 32, 16, 8, 4, 2, or 1Hz                                                        |  |  |
| Thermal Time Constant                                  | 2 ms                                                                                                                |  |  |
| Effective Emissivity                                   | 0.01 to 1.00 (default = 0.78)                                                                                       |  |  |
| Spectral Range                                         | 8 to 14 μm                                                                                                          |  |  |

<sup>1 –</sup> Optional Extra, 64Hz limit for IRTS-120-V2, 100Hz limit for IRTS-60-V2

#### **ELECTRICAL SPECIFICATIONS (SENSOR)**

Supply Voltage,  $V_s$  5 to 8 V Supply Current,  $I_s$  (typ) 6 Reverse polarity protection 6 Over-temperature protection (125  $^{\circ}$ C)

#### **MECHANICAL SPECIFICATIONS (SENSOR)**

| Weight                    | 20 g                  |
|---------------------------|-----------------------|
| L x W x H (max, 60° FOV)  | 36.6 x 26.0 x 12.3 mm |
| L x W x H (max, 120° FOV) | 31 x 29.0 x 12.3 mm   |
| Protection Rating         | IP66                  |



# **CAN SPECIFICATIONS**

| Standard        | CAN 2.0A (11-bit identifier), ISO-11898 |
|-----------------|-----------------------------------------|
| Bit Rate        | 1 Mbit/s                                |
| Byte Order      | Big-Endian / Motorola                   |
| Data Conversion | 0.1°C per bit, -100°C offset, unsigned  |
|                 | LF Sensor: 1200 (Dec) / 0x4B0 (Hex)     |
| Base CAN ID's   | RF Sensor: 1204 (Dec) / 0x4B4 (Hex)     |
| (Default)       | LR Sensor: 1208 (Dec) / 0x4B8 (Hex)     |
|                 | RR Sensor: 1212 (Dec) / 0x4BC (Hex)     |
| Termination     | None                                    |
|                 | -                                       |

#### CAN ID: Base ID

| Channel 1   |              | Channel 2    |              | Channel 3    |              | Channel 4    |              |
|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Byte 0 (MSI | Byte 1 (LSB) | Byte 2 (MSB) | Byte 3 (LSB) | Byte 4 (MSB) | Byte 5 (LSB) | Byte 6 (MSB) | Byte 7 (LSB) |

### CAN ID: Base ID+1

| Channel 5 Channel 6 |              | Channel 7    |              | Channel 8    |              |              |              |
|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Byte 0 (MSB)        | Byte 1 (LSB) | Byte 2 (MSB) | Byte 3 (LSB) | Byte 4 (MSB) | Byte 5 (LSB) | Byte 6 (MSB) | Byte 7 (LSB) |

### CAN ID: Base ID+2

| Channel 9    |              | Channel 10   |              | Channel 11   |              | Channel 12   |              |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Byte 0 (MSB) | Byte 1 (LSB) | Byte 2 (MSB) | Byte 3 (LSB) | Byte 4 (MSB) | Byte 5 (LSB) | Byte 6 (MSB) | Byte 7 (LSB) |

### CAN ID: Base ID+3

| C | Channel 13   |              | Channel 14   |              | Channel 15   |              | Channel 16   |              |
|---|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| В | Byte 0 (MSB) | Byte 1 (LSB) | Byte 2 (MSB) | Byte 3 (LSB) | Byte 4 (MSB) | Byte 5 (LSB) | Byte 6 (MSB) | Byte 7 (LSB) |

# WIRING SPECIFICATIONS (SENSOR)

| Wire                | 26 AWG M22759/32, DR25 jacket  |
|---------------------|--------------------------------|
| Cable Length (typ.) | 500 mm                         |
| Connector           | Deutsch DTM 4P (gold contacts) |

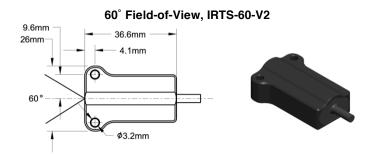
| Supply Voltage, V <sub>s</sub> | Red   | (Pin 3) | (twisted) |
|--------------------------------|-------|---------|-----------|
| Ground                         | Black | (Pin 4) | (twisted) |
| CAN +                          | Blue  | (Pin 2) | (twisted) |
| CAN -                          | White | (Pin 1) | (twisteu) |

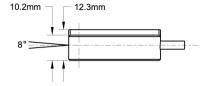


#### **SENSOR CONFIGURATION:**

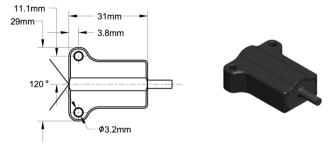
To modify the sensor's configuration, send the following CAN message at 1Hz for at least 10 seconds and then reset the sensor by disconnecting power for 5 seconds:

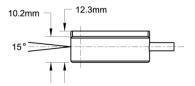
CAN ID: Current Base ID


| Programming Constant      | New CAN Base ID (11-bit)       | Emissivity                  | Sampling Frequency                                                                                                  | Channels                           |        |
|---------------------------|--------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------|--------|
| Byte 0 (MSB) Byte 1 (LSB) | Byte 2 (MSB) Byte 3 (LSB)      | Byte 4                      | Byte 5                                                                                                              | Byte 6                             | Byte 7 |
| 30000 = 0x7530            | 1 = 0x001<br>:<br>2047 = 0x7FF | 1 = 0.01<br>:<br>100 = 1.00 | 1 = 1Hz $5 = 1$ 6Hz<br>2 = 2Hz $6 = 3$ 2Hz<br>3 = 4Hz $7 = 6$ 4Hz <sup>1</sup><br>4 = 8Hz $8 = 1$ 00Hz <sup>1</sup> | 40 = 4Ch<br>80 = 8Ch<br>160 = 16Ch |        |


<sup>1 –</sup> Optional Extra, 64Hz limit for IRTS-120-V2, 100Hz limit for IRTS-60-V2

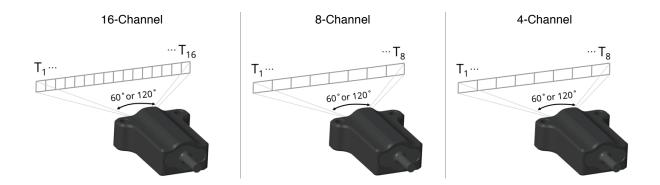
CAN messages should only be sent to the sensor during the configuration sequence.


DO NOT continuously send CAN messages to the sensor.


#### **DIMENSIONS:**






#### 120° Field-of-View, IRTS-120-V2

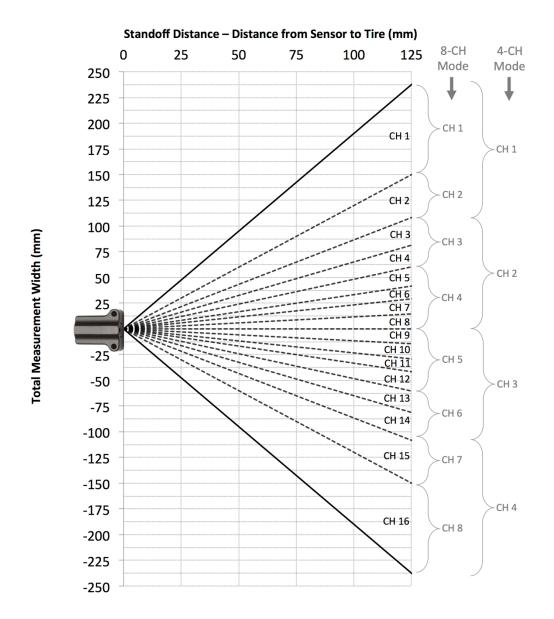






# Field of View (FOV):




# 60° Field-of-View, IRTS-60-V2:



(Approximate. Angle offset (z-axis rotation) between -5° and +5°, mounts should allow adjustment accordingly)



# 120° Field-of-View, IRTS-120-V2:

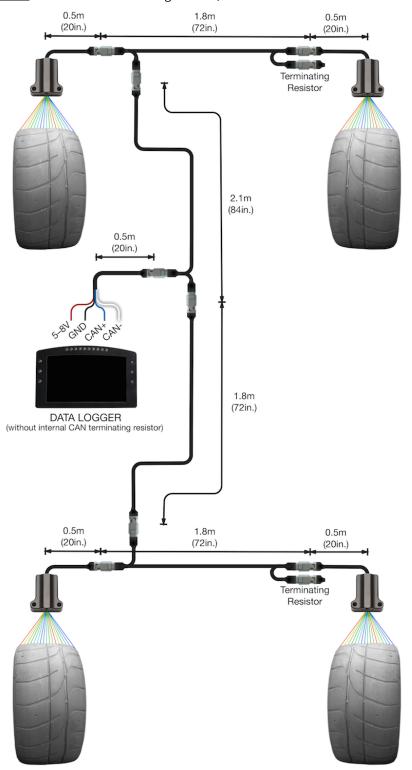


(Approximate. Angle offset (z-axis rotation) between -5° and +5°, mounts should allow adjustment accordingly)



#### **WIRING SPECIFICATIONS (HARNESS):**

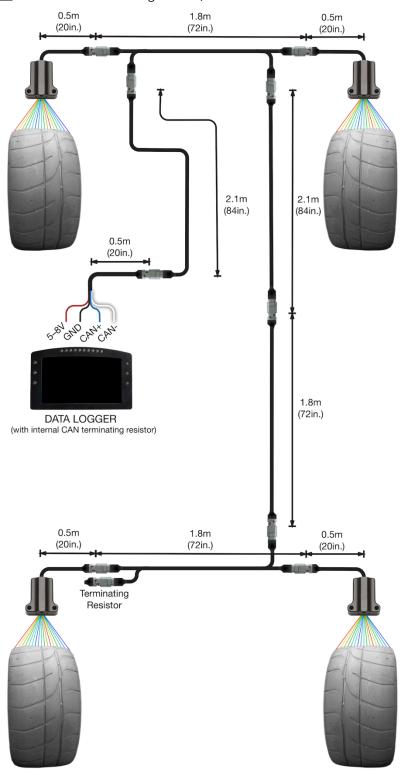
| Wire                | 22 AWG M22759/32, DR25 jacket, ATUM boots |
|---------------------|-------------------------------------------|
| Cable Length (typ.) | 1.8-2.1m trunk segments, 0.5m branches    |
| Connectors          | Deutsch DTM 4P (gold contacts)            |


| Supply Voltage, V <sub>s</sub><br>Ground | Red<br>Black | (Pin 3)<br>(Pin 4) | (twisted)  |
|------------------------------------------|--------------|--------------------|------------|
| CAN +                                    | Blue         | (Pin 2)            | (turisted) |
| CAN -                                    | White        | (Pin 1)            | (twisted)  |

- The default wiring harness layout is shown in the first diagram below and is designed for data loggers <u>without</u> an internal CAN terminating resistor (MoTeC, Cosworth, Bosch, Stack, 2D, AEM, RaceCapture/Pro systems).
  - The harness can be modified upon request for data loggers with an internal CAN terminating resistor (AiM systems). The layout of this harness is shown in the second diagram below.
- The harness needs to be powered with 5-8 volts (120mA) but may be extended to 6.5-36 volts upon request.
- The CAN terminating resistors are integrated into the short Deutsch DTM connectors. Resistor value is  $120\Omega$ .
- Female pins for MoTeC Tyco/AMP Superseal connectors or female pins (38943-22) for AS Deutsch Autosport connectors (e.g., AS620-35SN connector for C185, C187, L180, ADL/EDL) may be added to the flying leads for the data logger upon request.
- Additional CAN sensors (strain gauge amplifiers, brake temperature sensors, etc.) may be added to the harness by using a y-harness at each corner.
- Harness lengths may be modified upon request. Please contact us if you would like to modify the wiring harness / kit; we are glad to accommodate your specific requirements.

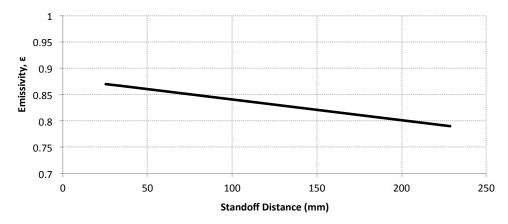


# **DEFAULT WIRING HARNESS LAYOUT:**

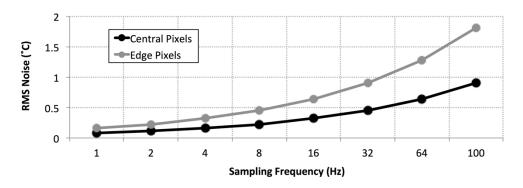

(Data logger without internal CAN terminating resistor)






# **ALTERNATIVE WIRING HARNESS LAYOUT:**

(Data Logger with internal CAN terminating resistor)




#### **ADDITIONAL INFORMATION:**

- Stated accuracy is under isothermal package conditions; for utmost accuracy, avoid abrupt temperature transients and gradients across the sensor's package.
- Point the sensor in the downstream direction (facing front of tire) to avoid contamination, pitting, and/or destruction of the sensor's lens from debris. Protective windows are available upon request.
- $-\,$  The *effective* emissivity of most tires ranges from approximately 0.75 to 0.90 in the 8 to 14  $\mu m$  spectrum.
  - Generally, the emissivity should be lowered as the standoff distance (distance from tire to sensor) increases; this is particularly important with the 60° FOV sensor due to the larger standoff distances required. The suggested emissivity vs. standoff distance is shown in the graph below:



- o Lowering the emissivity increases the measured object temperature and vice versa
- Noise Equivalent Temperature Difference (NETD) increases with increasing sampling frequency:
  - Provided that tire surface temperature is highly transient, it is usually advantageous to use a higher sampling frequency at the cost of increased noise. A sampling frequency of 16 or 32 Hz is recommended for most applications.

