

Infrared Tire Temperature Sensor, IRTS-V2 - Datasheet

The Izze-Racing tire temperature sensor is specifically designed to measure the highly transient surface temperature of a tire with spatial fidelity, providing invaluable information for chassis tuning, tire exploitation, compound selection, and driver development.

The sensor is capable of measuring temperature at 16, 8, or 4 laterally-spaced points, at a sampling frequency of up to 100Hz, object temperature between -20 to 300°C, using CAN 2.0A protocol, and enclosed in a compact IP66 rated aluminum enclosure.

SENSOR SPECIFICATIONS

Temperature Measurement Range, T _o	-20 to 300°C		
Package Temperature Range, T _p	-20 to 85°C		
Accuracy (Central 10 Channels, Nominal)	± 1.0 °C for 0°C < T _p < 50°C		
(16-Ch Sensor)	± 2.0 °C for T _p < 0°C and T _p > 50°C		
Accuracy (First & Last 3 Channels, Nominal)	± 2.0 °C for 0°C < T _p < 50°C		
(16-Ch Sensor)	± 3.0 °C for T _p < 0 °C and T _p > 50 °C		
Noise Equivalent Temperature Difference, NETD	0.5° C at 16Hz, $\varepsilon = 0.85$, $T_{o} = 25^{\circ}$ C		
Field of View, FOV	60°x 8° (wide)		
rield of view, rov	120°x 15° (ultra-wide)		
Number of Channels	16, 8, or 4		
Sampling Frequency	100, 64, 32, 16, 8, 4, 2, or 1Hz		
Thermal Time Constant	2 ms		
Effective Emissivity	0.01 to 1.00 (default = 0.85)		
Spectral Range	8 to 14 μm		

ELECTRICAL SPECIFICATIONS

Supply Voltage, V _s	5 to 8 V
Supply Current, I _s (typ)	30 mA
Features	 Reverse polarity protection
	 Over-temperature protection (125°C)

MECHANICAL SPECIFICATIONS

Weight	< 20.0 g
L x W x H (max, 60° FOV)	36.6 x 26.0 x 12.3 mm
L x W x H (max, 120° FOV)	31 x 29.0 x 12.3 mm
Protection Rating	IP66

Infrared Tire Temperature Sensor, IRTS-V2 - Datasheet

CAN SPECIFICATIONS

Standard	CAN 2.0A (11-bit identifier), ISO-11898				
Bit Rate (Default)	1 Mbit/s (configurable upon request)				
Byte Order	Big-Endian / Motorola				
Data Conversion	0.1°C per bit, -100°C offset, unsigned				
	LF Sensor: 1200 (Dec) / 0x4B0 (Hex)				
Base CAN ID's	RF Sensor: 1204 (Dec) / 0x4B4 (Hex)				
(Default)	LR Sensor: 1208 (Dec) / 0x4B8 (Hex)				
	RR Sensor: 1212 (Dec) / 0x4BC (Hex)				
Termination	None				

CAN ID: Base ID

Infrared Temp, CH 1		Infrared Temp, CH 2		Infrared Temp, CH 3		Infrared Temp, CH 4		
	Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

CAN ID: Base ID+1

Infrared Temp, CH 5		Infrared Temp, CH 6		Infrared Temp, CH 7		Infrared Temp, CH 8		
Byte 0 (N	1SB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

CAN ID: Base ID+2

Infrared Temp, CH 9		Infrared Temp, CH 10		Infrared Temp, CH 11		Infrared Temp, CH 12	
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

CAN ID: Base ID+3

Infrared Temp, CH 13		Infrared Temp, CH 14		Infrared Temp, CH 15		Infrared Temp, CH 16	
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

WIRING SPECIFICATIONS:

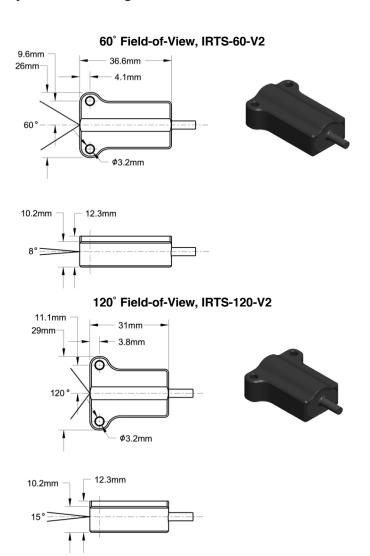
Wire 26 AWG M22759/32, DR25 jacket
Cable Length (typ.) 500 mm
Connector None

Supply Voltage, V _s Ground	Red Black	(twisted)
CAN +	Blue	(twisted)
CAN -	White	(twisten)

Infrared Tire Temperature Sensor, IRTS-V2 - Datasheet

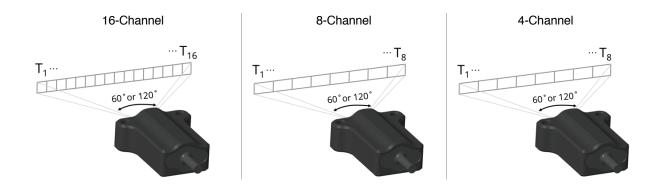
SENSOR CONFIGURATION:

To modify the sensor's configuration, send the following CAN message at 1Hz for at least 10 seconds and then reset the sensor by disconnecting power for 5 seconds:

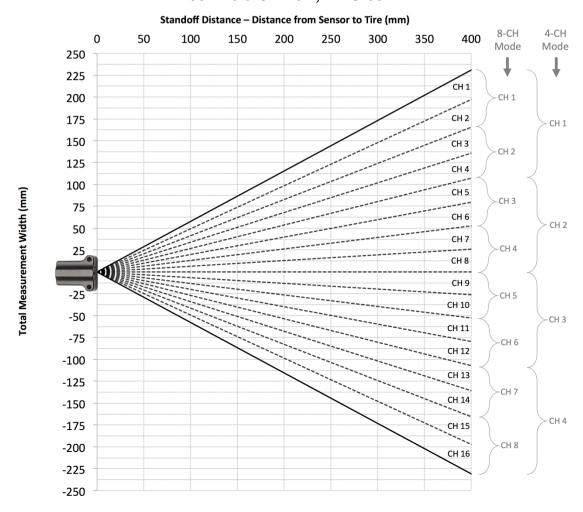

CAN ID: Current Base ID

Programming Constant	New CAN Base ID (11-bit)	Emissivity	Sampling Frequency	Channels	
Byte 0 (MSB) Byte 1 (LSB)	Byte 2 (MSB) Byte 3 (LSB)	Byte 4	Byte 5	Byte 6	Byte 7
30000 = 0x7530	1 = 0x001 : : 2047 = 0x7FF	1 = 0.01 : 100 = 1.00	1 = 1Hz 5 = 16Hz 2 = 2Hz 6 = 32Hz 3 = 4Hz 7 = 64Hz 4 = 8Hz 8 = 100Hz	40 = 4 Ch 80 = 8 Ch 160 = 16 Ch	

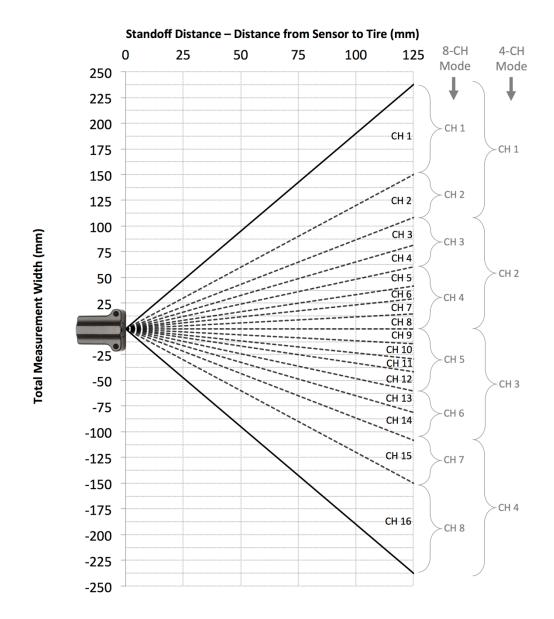
CAN messages should only be sent to the sensor during the configuration sequence.


DO NOT continuously send CAN messages to the sensor.

DIMENSIONS:

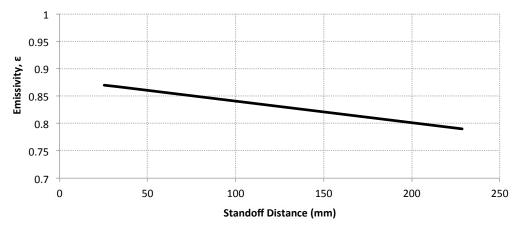


Field of View (FOV):

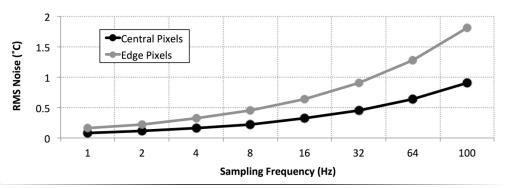

60° Field-of-View, IRTS-60-V2:

(Approximate. Angle offset (z-axis rotation) between -5° and +5°, mounts should allow adjustment accordingly)

120° Field-of-View, IRTS-120-V2:



(Approximate. Angle offset (z-axis rotation) between -5° and +5°, mounts should allow adjustment accordingly)



ADDITIONAL INFORMATION:

- Stated accuracy is under isothermal package conditions; for utmost accuracy, avoid abrupt temperature transients and gradients across the sensor's package.
- Point the sensor in the downstream direction (facing front of tire) to avoid contamination, pitting, and/or destruction of the sensor's lens from debris. Protective windows are available upon request.
- The effective emissivity of most tires ranges from approximately 0.75 to 0.90 in the 8 to 14 μm spectrum.
 - Generally, the emissivity should be lowered as the standoff distance (distance from tire to sensor) increases; this is particularly important with the 60° FOV sensor due to the larger standoff distances required. The suggested emissivity vs. standoff distance is shown in the graph below:

- o Lowering the emissivity increases the measured object temperature and vice versa
- Noise Equivalent Temperature Difference (NETD) increases with increasing sampling frequency:
 - Provided that tire surface temperature is highly transient, it is usually advantageous to use a higher sampling frequency at the cost of increased noise. A sampling frequency of 16 or 32 Hz is recommended for most applications.

